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Two aspects of polymer hydrodynamics:

1.  Influence of polymers on flow stability, flow  
structure and statistics-
macro-hydrodynamic experiment

2.  Influence of flow on polymer dynamics, 
conformations and statistics-
micro-hydrodynamic experiment, dynamics 
of a single molecule 



Rod climbing, or Weissenberg effect



Polymer molecules in a shear 
flow.

Elastic dumbbell model:

ηR/kλ ∝ -polymer relaxation time

η-viscosity, R-molecule size;  k~1/R²-spring constant.

First normal stress difference:
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Hydrodynamics of polymer solutions
Equation of motion:
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Full stress tensor-
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Three limiting cases:
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Wi Hydrodynamic turbulence

Elastic turbulence

Turbulent drag reduction

Elastic stress is the main source of nonlinearity at large Wi and low Re.

Recently discovered Elastic turbulence is a dynamic state solely driven
by the nonlinear elastic stresses that are present in the flow of a dilute
polymer solution. It can be excited at arbitrarily small Re (being
independent on it) but only, if Wi exceeds a critical value 
(usually of order of unity).
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Criterion of elastic instability in the 
B model-Oldroydframework of 

(Larson, Shaqfeh, Muller,1990).
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Strong shear primary flow Polymer stretching

Weak radial elongation coupled to strong primary 
shear flow leads to energy release into secondary flow
due to increase in hoop stress



A. Groisman & V.Steinberg, Nature 405, 53 (2000)

• Solution: 80 ppm PAAm, 65% saccharose and 1% NaCl, 

PasdaMPass 424.0;1018,324.0 6 =⋅== ηη 11 −= sγ&at

relaxation time λ=3.4 sec at 12C (temperature at which the experiment run ) 

Elastic turbulence



Von Karman Swirling Flow System



MAIN FEATURES OF ELASTIC TURBULENT FLOWS:

• randomness (in time), spatially smooth flow fields 

• sharp growth of the flow resistance

• algebraic decay of power spectra

• efficient mixing



Visualization of Elastic Turbulence.

Wi=6.5; Re=0.35 (a,b)

Wi=13, Re=0.7 (c-e)

Re=1, pure solvent



Flow Resistance
σ-stress measured at the upper plate

-stress in laminar shear flowlamσ

Shear rate 1 1/s--Wi=3.4, Re=0.3
Flow resistance increases by factors of:
11.5 for d=10 mm and 19 for d=20 mm

d=20 mm

d=10 mm

Polymer 
solution

solvent

510Re =

as in a pipe at



Power spectra of azimuthal velocity fluctuations at
(1) Wi=4.3; (2) Wi=6.3; (3) Wi=9.2; (4) Wi=13.6; (5) Wi=20.1

(LDV measurements)

Fluid motion is excited in a wide range of temporal scales,
due to fast decay only low frequencies contribute to power



Elastic turbulence is 
”counterintuitive“

Dependence on fluid viscosity, η
Inertial turbulence: higher η higher V,
Elastic turbulence: higher η lower V,
that is needed to excite turbulence

Dependence on system size, d
Inertial turbulence: smaller d        higher V,
Elastic turbulence: smaller d         lower V,
that is needed to excite turbulence

No apparent spatial scale other than d
only one time scale, λ , exists



Spatially smooth temporally random flow:

(i) in inertial turbulence at scales below dissipation length
(ii) in elastic turbulence

3−k1. Velocity power spectrum decays faster than

2. Smallness of higher order space derivatives in velocity
field or in cross-correlation function of velocity field. Thus,  
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Batchelor regime

Properties of smooth random flow:

It was shown experimentally by approximation a shape of velocity spatial correlation 
function just by velocity gradient terms (T. Burghelea, E. Segre & V. Steinberg, 

Phys. Fluids 17, 103101 (2005))



Theory of Elastic 
Turbulence 

E. Balkovsky, A. Fouxon, V. Lebedev, PRE 64, 056301 (2001)                   
A. Fouxon, V. Lebedev, Phys. Fluids 15, 2060 (2003)



In the framework of molecular theory polymer stress tensor can be expressed as

jiijp RRn 1
,

−∝ ττ

where n is polymer concentration, τ is relaxation time , and          end-to-end 
vector and                 the average conformation tensor

iR

In Hookean approximation of polymer elasticity and 
by neglecting thermal noise one gets uniaxial tensor jiij BB=τ

Then equations of motion can be rewritten in the form similar to MHD equations
with zero magnetic resistance and linear damping at  Re<<1 and Wi>>1
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Analogy with a small scale magneto-dynamo



Problem of small scale fluctuations v, B’ based on Eqs. (1,2) is reduced 
to linearly decaying passive field problem advected in large scale fields 
V,B that leads to power law velocity spectrum (spherically normalized)
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Velocity Spectrum in Elastic Turbulence

from our experiment

Eqs. (1,2) show instability at Wi>1 that leads to  random statistically 
steady state. The latter is stabilized probably due to back reaction of 
stretched polymers on velocity field (Eq.(2)). In the case, when viscous 
and relaxation dissipations of the same order, one gets 
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Then elastic stress can be estimated as

τ
ηντ ∝∇∝= jip VB2 and saturates as well as

rms of  velocity gradients



Exploring analogy of elastic stress field 
dynamo and passive -with magneto

scalar advection

T. Burghelea, E. Segre, V. Steinberg, submitted to PRL (2005)



THE MAJOR STEPS IN UNDERSTANDING THE 
MECHANISM OF ELASTIC TURBULENCE:

• view the elastic turbulence as a turbulence of the 
field of elastic stresses, 

• the stress field is directly related to the stretching of 
polymer molecules in the random flow:
and is coupled to coil-stretched transition on polymer . 

• large scale properties of can be inferred from
measurements of global quantities, such as the power 
injected into the system

• local properties of the stress fields can be inferred
from local measurements of fluctuations of the velocity
gradients (vorticity)

pτ

jip RR∝τ

pτ
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Probability distribution function of injected power fluctuations
at different Wi in the elastic turbulence regime
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Fig. 3
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Probability distribution function of the normalized velocity gradients (from LDV)
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λω ⋅≡ rmsbulkWi -normalized rms vorticity at different radial locations
in the bulk of the cell from r/R=0.2 till 0.66



Dependence of rms of the velocity gradient in a boundary layer 
(slope of the de as a function of the rotation velocity.
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λτ /c -normalized velocity correlation time (two setups)
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width as a function of viscosity; rms of the velocity gradient in boundary layer.



Normalized average azimuthal velocity profiles at different Wi; boundary layer
width as a function of viscosity; rms of the velocity gradient in boundary layer.
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Velocity boundary layer

Rms velocity grad 
Boundary layer
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New characteristic spatial scale-boundary layer width

We consider elastic turbulent flow that occurs at scales
below the dissipation scale in hydrodynamic turbulence. 

So the scale can be related only to scales of elastic stresses:
In passive scalar problem ; while in elastic 

turbulence4/1
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vs its order together with the same for the passive scalar structure functions



Role of elastic stress in statistical and 
scaling properties of elastic turbulence
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Two main observations, namely saturation of               (that means elastic stress)

and linear growth  of                  ( or elastic stress) in boundary layer can explain 

most of the results found experimentally.

First, this non-uniform distribution of elastic stress should result in non-uniform 
distribution of polymer stretching-the polymer molecules should be stretched 
considerably more in the boundary layer-we verify now this prediction experimentally.

Second, new length scale-boundary layer width –appears as the result of this 
non-uniform stress distribution:                                 

Third, elastic stress from BL is intermittently injected into bulk that leads to skewness
and exponential tail in PDF of injected power (torque) and exponential tails in PDF of 
velocity gradients in a bulk. Saturation of elastic stress in a bulk is consistent with
scaling of          observed. 
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This picture is in full analogy with the passive scalar problem in the Batchelor  
regime of mixing in a bounded container, where excess of tracer from BL is 
intermittently injected into bulk

Exploring further this analogy one can suggest that the boundary width is
that was observed experimentally. So 

The analogy with passive scalar is deepened by similarity in structure functions scaling. 
and direct relation to magneto-dynamo is also established.
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Theory of Polymers Dynamics in Turbulent
Flow: long-standing problem

E. Balkovsky, A. Fouxon, V. Lebedev, PRL 84, 4765  (2000)
M. Chertkov, PRL 84, 4761 (2000)
A. Celani, S. Musacchio, D. Vincenzi, J. Stat. Mech. 118, 529 (2005)
M. Chertkov, I. Kolokolov, V. Lebedev, K. Turitsyn, J. Fluid Mech.

531, 251 (2005)
K. Turitsyn, submitted to PRE (2005)
M. Martins, D. Vincenze, submitted to J. Fluid Mech. (2005)

(Lumley (1971),



Polymer molecule in turbulent or chaotic flow

R<η-dissipation length.
So a polymer molecule is immersed into spatially smooth
and temporally random velocity field (similar to Batchelor
problem of passive scalar mixing).

Thus, dynamics of stretching is governed by the velocity gradient only
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-rate of deformation in Lagrangian coordinates randomly
varies in time.                 

Two nearby fluid elements diverge exponentially on average:
)exp()0()( tRtR γ=

Since polymer molecule follows deformation of a fluid element, it can 
be stretched significantly even in a random flow (γ is the Lyapunov
exponent and defines the rate of stretching of a fluid element)
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Elastic turbulence and 
statistics of polymer molecules extension.

0R <<R<< maxR

τ
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Dynamic equation for the end-to-end vector R=Rn:

1
0)( −−∝Ρ αα

ii RRR
Probability distribution function of the molecule size R:

At α<0 the majority of molecules is strongly stretched.
At α>0 the majority of molecules has nearly equilibrium size.

α changes sign at γτ=1.  At γτ<1 ⇒ α>0;  at γτ>1 ⇒ α<0.

)( 1 γτα −∝ −
where

Thus, Wi’=γτ plays a role of a local Weissenberg number for a random flow
and the condition α=0 can be interpreted as the criterion for the coil-stretch
transition in a random flow that occurs at Wi’=1.



Numerical Simulations

B. Eckhardt, J.Kronjager, J.Schumacher, Comput. Phys. Commun. 147, 538 (2002)

G. Boffetta, A. Celani, S. Musacchio, PRL 91, 034501 (2003)

A. Celani and A. Puliafito, private communication and to be published (2005)



Single Polymer Dynamics:
stretch transition in a random flow.-coil

S. Geraschenko, C. Chevallard, V. Steinberg, 
Europhys. Lett. 71, 221 (2005)



r = 1mm
d = 200 µm







PDF of polymer extension 
at various Wi in random (left)
and shear (right) flows
Solid lines are fits by power
law                           with α

defined from the fits.
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(1)-elongational flow 
(S.Chu et al, (1997));

(2)-plane shear flow
(S.Chu et al, (1999));

(3,4)-random flow in λ-
DNA
and PAAm solutions;
(5)-shear flow in both 
solutions
(6)-fractional extensions 
in random flow 
corresponding to PDF’s
maximum
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Black dots are the data above the coil-stretch transition, open circles- below



Lyapunovtime -Finite
exponents

• Probability of finite-time Lyapunov exponents (FTLE)  is 
defined as

• By rescaling one can collapse the probability distribution 
functions for different                 on one curve

where S(λ) is the Cramer rate function. 

•  Minimum of  determines the average Lyapunov
exponent        for a given rotation rate (i.e.                 
for all PDFs scaled).
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Average Lyapunov exponent
as a function of Ω for (1) PAAm
and (2) λ-DNA solutions.
Inset: Cramer rate function at 
Ω=0.83 1/s.

λ



Relaxation of λ-DNA molecules in a shear flow.



stretch -Criterion of the coil
transition:

015.007.0 ±=crλ 1/sec

1.011±=τ sec

The experimental value for the critical Weissenberg number

2.077.0~
±=≡ τλcriW

and should be compared with theoretical prediction:

1=iW~



Conclusions:

1. The role of elastic stresses in the statistical and scaling properties of 
elastic turbulence is investigated experimentally.

2. The analogy between the elastic turbulence and the passive scalar
turbulent advection is fully supported by our data on global injected   
power, velocity gradients and RMS of their fluctuations. Here, the  
elastic stresses play the role of the passive scalar. 

3. The global injected power scales as        which is 
consistent  with the saturation of            and elastic stresses in a bulk. 

4.                       (and thus the stretching of polymer molecules) increases
O linearly with Wi in the boundary layer and saturates in the bulk,   

suggesting that the elastic energy is randomly and intermittently 
injected at large scales.

5.  Exploring further the passive scalar analogy, we suggest the following
scaling for the boundary layer width:                    
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A crucial step towards a theoretical description of ET was to relate
to the linearly decaying passive scalar problem:

kiikp BB==ττ
( ) ( ) λ/BVBBVBt
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The equation above, complemented by the equation of motion written for Re<<1:

and by the boundary conditions, leads to ELASTIC INSTABILITY at              . 

At Wi>Wic, the instability eventually results in chaotic, statistically steady 
dynamics. In the chaotic flow the velocity fluctuations dominate on  the 
scale of the system size, and the dynamics are determined by non-linear
interaction of modes with scales of the order of the system size. 
Thus, the elastic stress on  small scales can be estimated as:
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E. Balkovsky, A. Fouxon, V. Lebedev, PRE 64, 056301 (2001)                                  
A. Fouxon, V. Lebedev, Phys. Fluids 15, 2060 (2003)

Theory of Elastic Turbulence


