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Fig. 8.— The final angular power spectrum, {(/ + 1)C)/27, obtained from the 28 cross-power spectra,
as dezcribed in §5. The data are plotted with l¢ measurement errors only which reflect the combined
uncertainty due to noise, beam, calibration, and source subtraction uncertainties. The solid line shows the
best-fit ACDM model from Spergel et al. (2003). The grey band around the model is the lo uncertainty
due to cosmic variance on the cut sky. For this plot, both the model and the error band have been binned
with the same boundaries as the data, but they have been plotted as a splined curve to zuide the eye. Ou
the scale of this plot the unbinned medel curve would be virtually indistinguishable from the binned curve
except in the vicinity of the third peak.
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galaxy sample assuming @ = 0.5 and r = 1. As discussed in the text, uncertainty in 7 and r contribute to an overalt calibration uncertainty of
order 4% which is not included in these error bars. To remove scale-dependent bias caused by luminosity-dependent clustering, the measurements
have been divided by the square of the curve in the top panel, which shows the bias relative to L. galaxies. This means that the points in the
lower panel can be interpreted as the power spectrum of L. galaxies. The solid curve (bottom) is the best fic linear ACDM model of Section 5.
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related. Note that the vertical axis mixes logarithmic and linear
scalings. The inset shows an expanded view with a linear vertical
axis. The models are 2, A2 = 0.12 (top, green), 0.13 (red), and
0.14 (bottom with peak, blue), all with Q,h* = 0.024 and n = 0.98
and with a mild non-linear prescription folded in. The magenta
line shows a pure CDM model (Q,h? = 0.105), which lacks the
acoustic peak. It is interesting to note that although the data ap-
pears higher than the models, the covaritance between the points is
soft as regards overall shifts in £(s). Subtracting 0.002 from &(s)
at all scales makes the plot look cosmetically perfect, but changes
the best-fit x? by only 1.3. The bump at 100k ! Mpc scale, on the
other hand, is statistically significant.
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Figure 2 The redshift-space correlation function for the 2dFGRS, £(o, 7),
plotted as a function of transverse (¢) and radial (7) pair separation. The func-
tion was estimated by counting pairs in boxes of side 0.2~ Mpc (assuming an
£ = 1 geometry), and then smoothing with a Gaussian of rms width 0.5 27! Mpec.
To illustrate deviations from circular symmetry, the data from the first quadrant
are repeated with reflection in both axes. This plot clearly displays redshift
distortions, with ‘fingers of God’ elongations at small scales and the coherent
Kaiser flattening ai large radii. The overplotted contours show model predic-
tions with flattening parameter 8 = Q2°%/b = 0.4 and a pairwise dispersion of
op = 400 kms~!. Coniours are plotted at £ = 10,3,2,1,0.5,0.2,0.1.

The model predictions assume that the redshift-space power spectrum
(P,) may be expressed as a product of the linear aiser distortion and a radial
convolution*: Py(k} = P.(k) (1 + Sp®)* (1 + ko7 u®/2HE) ™!, where p = k- F,
and o, is the rms nairwise dispersion of the random component of the galaxy ve-
locity field. This model gives a very accurate fit to exact nonlinear simulations®,
For the real-space power spectrum, P.(k), we take the estimate obtained by de-
projecting the angular clustering in the APM survey®1é. This agrees very well
with estimates that can be made directly from the 2dFGRS, as will be discussed
elsewhere. We use this model only to estimate the scale dependence of the
quadrupole-to-monopole ratio {although Fig. 2 shows that it does match the full
¢(o,7) data very well). '
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set of potentials producing the same perturbation spectrum.
In particular, the problem of accuracy of the slow-roll approximation pred'ction for Py(k)
(including higher order corrections) has been intensively and critically studied recently us-
ing different methods: [14], [15] (the uniform approximation), [16] (the improved WKB-
approximation) and others.

By an exact solution I mean a solution of the following system of equations for a spatially-
flat Friedmann-Robertson-Walker (FRW) background with a scale factor a(t) and scalar
(adiabatic) perturbations described by the Mukhanov variable Q = u/a:

,  87G $?
H ——3—-'(-5'+V(¢’)), (1)
$+3H$+Z—Z=0, (2)

d4? 142
(-2 =0, ©

obtained without any approximations. Here

_ @ _ e _ [ |
H=—y z2=3, ”"/a(t)’ | )

dot means the derivative with respect to ¢, ux(n) exp(ikr) is the wave function of a Fourier
mode of the quantum field u (the c-number multiplying the Fock annihilation operator dy),
and ¢ = h =1 is put throughout the paper. The variable @ [17] is equal to é¢z, + %(I) in the
longitudinal gauge (® is the quasi-Newtonian gravitational potential), or to éqbs—g%(p—}-,\) in
the synchronous gauge (i and A are the Lifshits variables}. The normalized initial condition
for v corresponding to the adiabatic vacuum at ¢ = —o0 (n = —o0) is

e—-ikn
Worl | (5)

At late times during an inflationary stage in the super-horizon regime (k < aH, 7 — 0},

Up =

— const = ((k) (6)

(¢ = —h/2 in the notation of [4]).
Then the initial spectrum »f adiabatic perturbations for a pcst-inflatioszry cosmology in
the super-horizon regime is (assuming the absence of non-diagcial pressure components):

cdPoe (1 _ .i{JL’adt)Q o= (1— g/ﬁ’adt)zfpo(k)fikﬁ, po(k)=’%§§l. 7

Here ¢t = 0 corresponds to the end of inflation. For historical r~asons, the slope ng of the
spectrum is J<fined with respect to density pertu. .ations in Jhe non-relativistic dark matter
+ baryon component at the present time, (ép)r = —k?®, /4nrGa? < ore integration over dk.

[a)



So,ns =1+ d—':}f—Hﬁ. Finally, using the equation # = —4mrG¢? that follows form Egs. (2)
and (3), Eq. (2) can be recast in the Hamilton-Jacobi form [18]:

H?($) 8xG
204\ _ ?)
where the prime denotes the derivative with respect to ¢.
Exact solutions of the inverse problem of reconstruction of V(¢) given Py(k) are known for

the following two cases only, if not speaking about solutions describing universes collapsing
towards a singularity.

@ A power-law perturbation spectrum with the slope ns = const < 1 [19]. Then
167G

V($) x H*($) < exp ( >1. (9)
This is just the power-law inflation. Considered as a function of ¢(¢), H is related to
V(#) through Eq. (8). Note, however, that this is not the only potential producing the
ng = const < 1 spectrum.

@ The case when no perturbations are generated at all (no real created quanta of the inflaton

H($) = Hyexp(2nGe?) , V(6) = S (1 _ AnGe”

e 3 ) exp(4mG¢?) . (10)

In literature, this case is sometimes incorrectly referred as the potential generating the
ns = 3 perturbation spectrum. However, one should not forget that generated perturbations
are quantum (even quantum-gravitational) and require renormalization. After subtraction
of the vacuum energy w(t)/2 = k/2a(t) of each mode, no created fluctuations remain in
this case. Moreover, a number of real inflaton quanta generated in each perturbation mode
k should be large, because in the opposite case they may not be interpreted as classical
perturbations after the end of inflation (see [21] for a more detailed discussion of this point).

Strictly speaking, there is no exit from inflation for the potential (9), and the potential
(10) does not admit a low curvature regime at all. However, in the former case V(¢#) can be
deformed such that it reaches zero at a sufficiently large value of ¢. This will result in a very
small change of the perturbation spectrum at present scales of interest that may be sa,fel;'
neglected. Sometimes, the case of a parabolic potential near its maximum V(¢) = V; — ”‘2
is mentioned as an exactly soluble case. However, 1t is not such the one in our termmology
since in tais case H(@) is approximated by the constant value Ho = /87GV;/3.

In this paper, a family of exact solutions for the case ng = 1 is constructed. It is just the
initial spectrum proposed by Harrison and Zeldovich [22], after all, for beauty reasons. Note
that it satisfies the most recent CMB data [23, 24]. Let us first consider what follows for
this case from the slow-roll approximation. Then, the leading term in the power spectrum
reads

Bek) (:ﬁ\ , (1)

t=ty

where {; is the moment when k = ¢H. It is clear that, to get ns = 1, V¥2/V’ should
not depend on ¢. Therefore, V($) x ¢~2. Note that this solution of the reconstruction
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problem is unique for a given amplitude of the flat spectrum. This kind of inflation was
dubbed intermediate inflation in [25] (see also [26]). Its scale factor behaviour is a(t) o
exp (con.st 13/ 3) . Once more, it does not have an exit from inflation, so it should be modified
at large ¢. A next order slow-roll correction to this potential was considered in [27].

To obtain an exact solution for H(¢) and V(¢) in the case ns = 1, note first that, for

ldgz 2'

AT (12)

Eq. (3) reduces to the equation for a massless scalar field in the de Sitter background and"

has the solution :
\ o (1 i ) 13
Up = \/27; kn ( )

satisfying the initial condition (5). Let us write the general solution of Eq. (12) in the form

s

= (1+l’7'3), n<0, (14)

where A, 1o are constants. The limiting case 7y — 0, when the first term in brackets may
be neglected, is not interesting because it corresponds to a collapsing universe (however,
it is “dual” to the case my — o¢ considered below). The power spectrum of the growing
perturbation mode is Py(k) = 1/4n2B? and does not depend on no (o appears in the
amplitude of the decaying mode only and makes it non-scale-free). Thus, we have got the
exactly flat spectrum. Present observational CMB data [24] fix the quantity B with ~ 10%
accuracy:

1 A - 1/2
s 4.8.107° (6_9 exp(t — 0. )) : (15)

where A is the quantity introduced in [24] and 7 is the optical length after recombination.
In this notation, A = 0.9 corresponds to the value A = 4.3 - 10~ of the other quantity A
introduced in [28] to characterize an amplitude of initial perturbations (a.nd conjectured to
lie in the range (3 —10) - 10~4 in that paper).

Since the aim of this paper is to find some exact solution, I will not investigate if there
exist other forms of z leading to the ns =1 spectrum, too. The absence of other solutions
for 2 would immediately follow from scaling arguments if we assume that u o< k=12 f(kn)
for all n. However, the latter assumption might not be necessary. Moreover, I will consider
only one particular case of Eq. (14) corresponding to the limit 5o — o0.

So, let z = —B/n. Let us express all quantities of interest as functions of ¢:

t = 4ij%‘5’,—, lna=fH(t)dt=—41rG[§;dqb,

n = .[a(t = —47rGf%§ exp (47rGf %dqﬁ) ) (16)

ad H H
i= = e exp(—41rG/—E7dqb) g




Equating the last line in Eq. (16) to —B/n, we get the following equation:

4nG H
[P(@)ds=-BHP, P=ZTTexp (wcf - d¢) . (17)
After differentiation, Eq. (17) reduces to P = —B(HP'+ H'P), or
4nGH* HH" , 1
- —~=0. 18
T 70 + H' + B 0 (18)
Let us introduce dimensionless variables
32n*G* B?
z=VIrGé, y=BVarGH , v(z)= == —F—V(9). (19)
Then, from (8), v = y* — (1/3)(dy/dz)?. For these variables, Eq. (18) reads:
de dy\" | dy
2= -2 2
Y Iz (dz) ta Y (20)

After dividing by »?, the last equation can be integrated to dy/dr = zy — 1 (an integration
constant is excluded by shifting z, i.e., ¢). Therefore,

L ( / P e gz 4 c) , (21)

where C is another integration constant. This just yields us a one-parameter family of
solutions having ng = 1. The so-called slow-roll parameters for this solution:

1 H? (1 :
f(¢)=4TG"H—z-(§“”)’
LH _1dy_n_ 2., (22)

i($) = WG H yd? »

The partial solution with € = 0 has an infinite inflationary stage which is just described
by the slow-roll approximation for > 1. Its graph is plotted in Fig.1. Its large-z expansion

* 1 1 3 15 17 9
VTRt Et e v a Tt )
It is stra,lghtforwa,rd to check that it leads to ng = 1 (as it should be) for the first [8] and
second [9] order corrections to the slow-roll approximation. However, these corrections miss
the whole 1-parametric family with C # 0 completely. '
For z < 0, the solution with €' = 0 has rather peculiar behaviour: the potential v(z)
reaches the maximum value vy, /= 7.252 at z =~ —1.326, becomes zero at z &~ —1.618 and
then going to —oo at £ — —oo (however, such effective potentials are considered in string
inspired models now). In the latter limit, ¥y — oo, so we get an initial curvature singularity
at a finite proper time to < 0. If { = 0 is the moment when z = 0 (v(0) = 7 — 1 ~ 1.237) and
the inflationary stage begins, then |tg| ~ H~1(0) ~ BG'/2, The scale factor reaches zero very

slowly: a(t) o< |In(t — #9)|"!/2 for t ~ t,. Still the Riemann tensor is not twice integrable for

»



Figure 1: The dimensionless potential v(z) for the C = 0 case.

t — to, so this singularity is a strong one. The same refers to all initially expanding (y > 0)
solutions with C' # 0 and C' > —+/2r - they all begin from such a singularity.

By taking C' < 0 and very small, it becomes possible to construct a solution with a long
but finite inflationary stage. Namely, if C' = —v/3z7% exp(—z}/2) with z, > 1, then v(z)
becomes zero at = = z, (y still remains ~ z{'). In this case inflation ends (¢, 7] ~ 1) at
z = 2,—O(z7"). The total number of e-folds is Ny, = 2rG@2 = z%/2. Thus, C ~ exp(— Niy)
that is in agreement with the general principle that terms not caught by an arbitrary order
of a WKB-type expansion are exponentially small. For z > z,, one may put v = 0. Then
the kinetic dominated phase a(t) o t'/3 follows the inflationary stage. Or, we may assume
that v has a local minimum v = 1 4%(z — z,)? around this point. It results in oscillations in
¢ and the matter-dominated post-inflationary stage a(t) o t3/3,

Finally, note that the spectrum of gravitational waves (GW) is not flat for this model:
for | € z <« z;, the tensor-scalar ratio and the slope of the GW initial power spectrum
r = —8n = 16/z% = 8/N where N is the number of e-folds from the beginning of inflation.
The present upper observational bound r < 0.36 {29] requires NV > 22 for the comoving scale
crossing the Hubble radius at present. So, Ny, should exceed ~ 70 in this model.
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