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Photochromism is a reversible transformation in a
chemical species between two forms having different
absorption spectra by photoirradiation. It is of special
Interest for optical data memory systems

(photon mode erasable optical recording media).
Examples: single molecules; polymers, biological
molecules , e.g., photoizomerization

of retinal in bacteriorhodospin.

Advantages: speed of writing, fatigue due to material
movement Is eliminated.

Requirements: high qguantum yields and fast and
non. destructive read-out and write capability.
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The chemistry of life requires a myriad of various
reactions. All these reactions proceed with remarkable
efficiency, speed and selectivity.

Many important chemical transformations proceed

on the femtosecond time scale. Methods to investigate:
Pumpe — probe techniques, where an ultrashort pulse
excites a chromophor and triggers the process

to be investigated.
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The attempt to get information from On or Off states
results to undesirable change of information: the switch
state Is altered by the action of the reading method.

A solution to this problem: molecules which present
not only absorption bands active to the opening closing
procedure but also present additional bands inactive

to the switching action. Reading could be easily effected
by the irradiation of these inactive bands.

These systems are photoswitchable molecular wires.
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The primary event that initiates vision is the light
Induced cis-trans isomerization of retinal in the

visual pigment rhodospin. It is the fastest
photochemical reaction in nature an is complet in only
200 fs with quantum yield 0.6.

Dissipation of molecular vibrational excitation energy
typically takes place on ps scale. So molecules must

be able to channel energy more rapidly to direct

It in a useful manner.
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To understand chemical reactions, theorists solve
the Schrodinger equation for electrons to calculate
potential energy surfaces on which the nuclei move.
These surfaces are then used in quantum dynamical
computations that solve the Schrodinger equation
for the nuclei taking part in the reaction at different
energies.
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The predominant reaction pathway is often summarized
In the form of a simple potential energy.
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L.Salem, Science (1976).
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PES. describing each of the two 1somers. Efficient and ultrafast conversion occurs when the
sphitting of these PES at the avoided crossmg 15 not too large. For a large gap. 1somerization occurs
only subsequent to vibrational relaxation and will not be ultratast. The case of a lower energy
excited state PES. intersecting twice the ground state barrier was discarded. since the resulting

adiabatic upper PES has two minima. separated by a barrier. and slow tunneling through this barrier

was thought to limit the reaction rate.
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L E.Shimshoni, Y.Gefen
Ann. Phys. (1991).
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Connection matrices match asymptotically semiclassical
(approximate) solutions for the exact (model) potential
to the exact solutions with approximate near stationary
points potentials (comparison equations:

Airy and Weber functions.

Full connection matrix is a matrix product of the
elementary connection matrices at stationary points

and diagonal shift matrices translating solutions
between the stationary points (depending on the actions:
Imaginary in classically forbidden regions and real in
classically accessible regions.

E.l. Kats, December 2005



I I
| |
: k / \ | |
| " | L | 7 |
I | I C I | I
| | | |
| | | |
-Xo I-XC -X1 X1 XCI Xz
I I
I X I X
I'XC -X3 >|<1 CI | 2
| |
I ! I '
k TC I 3 I
|

E.l. Kats, December 2005



_

—

2 _
Uiy =

, €
minV - < — <maxV— =

8

—Uui9,

sss——

E.1. Kats Derember 2005




_

—

E.1. Kats Derember 2005




7/
NEUTRONS B e e
FOR SCIENCE STARE SR &

P exp(1yWy) 0
N 0 exp(—1yWy) )

E.l. Kats Derember 2005



/[ {
NEUTRONS e e
FOR SCIENCE "“i*"-'w;;\ S \ Y

———

E.l. Kats Derember 2005



/4
NEUTRONS —————y
FOR SCIENCE LA S SRS

V = U%Q/(ZL\/‘E)

T e

Massey parameter

E.l. Kats Derember 2005



/4
NEUTRONS
FOR SCIENCE

Wy, =

)
3
A oo
=
Ly

dX \/ V= —
"‘/

0 0
(sin’(7v))/p — cos(mv)

cos(mv) p

0 0

s oy v ==

— cos(Tv)
0
0

(sin?(m)) /p

E.l. Kats Derember 2005




/(4
NEUTRONS
FOR SCIENCE

N R B - ‘ﬁf 3
<SNEHS = ﬂ"« SRS = an
. Lt

B V271 exp(—2y)

p

/éi\

Cr
\ D /

I'(v)
X = (v/2)—(1/2)(r —(1/2))Inv

Dy,
\ C1, /
Ap=A; =Cp=Cp =0,

UsaUsz — UoggUss =0,

E.l. Kats Derember 2005




C — exponentially increasing solutions for the
upper potential adiabatic potential,;

D — exponentially decreasing solutions for the
upper adiabatic potential;

A —Ingoing waves and B — outgoing waves
for the lower adiabatic potential.
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Real parts of the eigenvalues as functions of adiabatic coupling strength. ;5. in a potential with X,
= (L1, and y= 12. Quantum numbers. n", of the harmonic diabatic potential are indicated (tor clarity
only even numbers) at the lett, while on the right side those of Qg- and Qg -states of the upper
adiabatic potential are shown. D-states are marked by dashed lines up to values ot u;.. for which the
imaginary part of eigenvalues exceeds the energy spacings. The evelution of the stationary points.

o Hmn g Rmm ) g the upper adiabatic potential are shown by dash-dotted lines.
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Bold lines:
Q-states (non-monotonic decay);

Dashed lines :
D-states (monotonic decay);

Dot-dashed lines:
Maximum and minima of the upper adiabatic
potential.

Left numbers — diabatic guantum numbers;
Right numbers — adiabatic quantum numbers.
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Wave functions can be also calculated by the connection
matrix technology.

$,(Xp, X) = MpLpj—1 My_1...MoLoy M1, (X, X1) .
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Wave functions of the bound states for the upper
adiabatic potential for the energy close to

the ground state in the L-well.

In the diabatic limit the functions correspond to strongly
excited states of the harmonic oscillator (extended in the
broad region between the crossing points).

In the adiabatic limit the functions are localized within
the wells of the upper adiabatic potential.

For the intermediate coupling strengths — the functions
are combinations of localized and delocalized states.
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For a symmetric potential, Xj; = 0. this quantum vield always equals '2. In the asymmetric potential.
the quantum vield decreases as a function ol u,, and reaches zero in the adiabatic limit due to the
localization of adiabatic wave functions in the L or R wells. With increasing asymmetry. the region
where Vg drops 1s shifted towards smaller values ot u,. However, in the intermediate region ( w4, =
1-3). high values of quantum yield (¥;5 = 0.1) are preserved even when the asymmetry becomes
comparable to the characteristic frequency. Moreover. for states above the barrier with £ > 1.5 17,
Yir = 0.3, Our model, therefore, provides a basis tor both experimental findings, namely the high

quantum vield combined with ultratast dynamics ol photolsomerization reactions.
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In the diabatic limit:
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Decay rate should be averaged over environment
spectrum. The effect is relevant in the adiabatic
and diabatic limits but it is relatively small for
the intermediate couplings.

E=¢,+ plé)e.
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Survival probability of the instantly prepared quasi-stationary state in the L well for the asymmetric potential:
=01, and v=12:

(a) uyg = 0.3;
(b) wia = 1.5;
(c) ugs = 3.0;
(d) w2 = 5.0.

e ————— i

E.l. Kats, December 2005



a)

0.0 4.0 8.0 12.0 16.0 20.0

t

b)

0.0 4.0 N 12.0 [ 6.0 t 20.0

E.l. Kats, December 2005




© s
(.G
04
0.2

“.“ |IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|

(.t 4.0 8.0 12.0 6.0 t 20.0

1.0
P,

iR
0.6

0.4

0.2

“.“ |IIIIIIIIIIIIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|

(.0 4.0 n.U 12.0 16.0 t 20.0

d)

E.l. Kats, December 2005




0.0 20.0 40.0 60.0 80.0

100.0

t

E.l. Kats, December 2005



1.0
0.8
0.6
0.4
0.2

0.0
0.0 4.0 8.0 12.0 16.0 20.0

0.0 4.0 8.0 12.0 16.0 t 20.0

E.l. Kats, December 2005






-
-
fffff
T

E.l. Kats, December 2005



E.l. Kats, December 2005



The time evolution of wave packets I and Il has been calculated in the wide range of coupling
constants from the diabatic (u;2 = 0) to the adiabatic (#;> == 1) limit. The evolutions are shown in
Figs. 4 and 5. In the diabatic limit. wave packet | spreads over the wide lower diabatic well and
recovers near the turning points with the residual amplitude (Fig: 4a). As the coupling increases. the
wave packet amplitude decreases due to the decay of Q-states (Fig. 4b. ¢). In the adiabatic limit
(Fig. 4d). packet [ is localized in the lett well and its decay rate becomes small. since nonadiabatic
transitions are suppressed. The behavior of wave packet 11 1s similar to that of packet 1 not only in
the diabatic limit. but also in the wide range ol intermediate coupling (Fig. 3a. b). In contrast to
packet [. packet Il is delocalized in the adiabatic limit due to fast overbarrier transitions. The
similarity of the dynamics ol packets I and 11 in the wide intermediate range of coupling is the result

ol double nonadiabatic transitions.
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FIG. 1. Potentials in the vicinity of the diabatic potentials cross-
ing point U": The diabatic potentials (thin lines, 1,2), the adiabatic
potentials (bold lines, 3.4), the adiabatic coupling energy U,,, and
E, 1s the characteristic zero-point oscillations energy in the para-
bolic barrier approximated the lower adiabatic potential near its top.
The tunneling energy £ region 1s shown by a broken line.
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In the tunneling region
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FIG. 6. The matching of the asymptotic solutions in the tunnel-
ing region for the diabatic levels crossing shown in Fig. 1(a): 1 - the
function fllz(ﬁ \27m/I'(1+v); 2- the function &, (X); 3 - the func-
tion (I);(X) \2m/1'(1+v); 4 - the function ®,(X); 1" - the func-
tion exp(koX)D__(BX); 2" - the function exp(kyX)D_,_ (—BX);
3" - the function exp(—k\X)D_,_(BX); 4’ - the {function
exp(—koX) Dy, (—BX).

=y

E.l. Kats, December 2005



® o exp(KX+ 5(1<X)3—%53(1<X)3 T )

In the intermediate coupling region:

U _

Kj o, = i’V./_;eXp(l(P);
) lf£12 .

K3 4 = il'Y./j'eXp(—l(P)ﬂ

E.l. Kats, December 2005



Z, =2y = 2K, o/ Oy €XP (—i/2) (X — 2K,,)  exp(=i)),
Zy = 2, (17)
= 2K o/ B XP (i9/2) (X = (2Ki) ' eXp (i),
and
pr = pr—1
l

1S exp(—.i(p)(l+25i“exp(—2f(p))ﬁ (18)

- _1_

mnt

S (S

exp (iQ) (1 +28;,exp(2i9)),

int

E.l. Kats, December 2005



m Y(“l” )”; 6im - (Yzf)/(m{fnt)'
D ,(z) =< exp [2...( (p + ;))hzdz}.

D, < exp (—E'J.,\/GU +a, X+ azde.x)

W) = exp(kX)D,(z,(X)), (22)
and
Y1, W, o exp(F (X)), Wi, Vs exp(—Fi (X)),

(23)
W, Wy o exp(iFy (X)), W, W, o< exp(—iF, (X)),

E.l. Kats, December 2005



F1o(X) = Yy £ 01+ 8,0 X — Ky 8iexp (—2i ) X

v q (24)
+ ff (1 + _U_ _ ‘Sim)XJ.

[2uy, . Ju,, £ O U,

| X °C R - sc |
lPl +1P44'" s le_I_lPB — Y

1 T P N - SC
lIll —I_ lPB lP—‘i‘; 1P2 _I_ lP4 — l}’__&

E.l. Kats, December 2005



Combining the asymptotic expansions for these
combinations we find at the crossing point:

(21T (g*))exp(—2%(g*)) 0
Ul = 0 ( l"{f;}..-"'ﬁ}emj{'l}{{q (1 —exp(—2nyg, }coﬁ;z{mh}}
0 exp(—2my,)cos(my,)
exp(—2mg,)cos(my,) 0
0 —exp(—2my,)cos(my, ) i
—exp(—2myg,)cos(mg,) 0
(J21/T(q))exp(2x(q)) 0
0 (T(g*)/~2m)exp(2%(g*))(1 — exp(-2Tq, }cosz{'mh ) |
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These relations provide asymptotically smooth
matching of the semiclassical solutions with the Weber

functions when:

k 1s of the order of y>1

and with the Airy solutions when: —
K=\"Y.
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