Strongly correlated phenomena in Quantum Field Theory, Nanophysics and Hydrodynamics

Trieste, 12-15 December 2005

Phase separation in eukaryotic chemotaxis

A. Gamba, A. de Candia, S. Di Talia, A. Coniglio, F. Bussolino, G. Serini

Outline

- Directional sensing and motility of eukaryotic cells
- Model reaction-diffusion system
- Phase separation instability
- Detection of slight anisotropic signals
- Monte Carlo results

Eukaryotic cells

Eukaryotic cells

Many eukaryotic cell types form multicellular aggregates by motion directed by chemical signals

Dictyostelium

Blood vessel formation

Aggregation guided by chemical signals

- Formation of tissues, in particular:
 - Blood vessels
 - Nervous system
- Healing of wounds
- Cells of the immune system navigating to sites of inflammation

Aggregation is possible thanks to:

1. Motility

2. Sensing

Motility

Actin filaments

Microtubule

Microfilaments

0.25 µm

Motility

Quiescent cell

Sensing

Motility

Uniform stimulation

(slightly) anisotropic stimulation

Devreotes, Janetopoulos. J. Biol. Chem. 278 (2003) 20445

Janetopoulos, Ma, Devreotes, Iglesias, PNAS 101 (2004) 8951

Cytosol

$$\begin{split} \varphi &= [\mathrm{L}_{+}] - [\mathrm{L}_{-}] \\ c_{0} &= [\mathrm{L}_{+}] + [\mathrm{L}_{-}] \\ \partial_{t}\varphi &= D\nabla^{2}\varphi + \alpha \frac{c_{0} - \varphi}{2K + (c_{0} - \varphi)} - \beta \frac{c_{0}^{2} - \varphi^{2}}{2K + (c_{0} + \varphi)} \\ \mathrm{Total\ number\ of\ E-\ enzymes\ in\ the\ cell} \\ \partial_{t}\beta &= -\left(\frac{k_{\mathrm{ass}}}{2V} \int_{S} (c_{0} - \varphi) \mathrm{d}\sigma + k_{\mathrm{diss}}\right)\beta + \frac{Nk_{\mathrm{ass}}}{2Vk_{\mathrm{cat}}} \\ \mathrm{Cell\ surface} \end{split}$$

$\varphi = [\mathbf{L}_{+}] - [\mathbf{L}_{-}]$

 $c_0 = [L_+] + [L_-]$

Effective potential, depending on the number of activated receptors and the total number of available enzymes

$$\partial_t \varphi = D_2 \nabla^2 \varphi - \frac{\partial V_{\alpha,\beta}}{\partial \varphi}(\varphi)$$

Total number of E- enzymes in the cell

$$\partial_t \beta = -\left(\frac{k_{ass}}{2V} \int_S (c_0 - \varphi) d\sigma + k_{diss}\right) \beta + \frac{Nk_{ass}}{2Vk_{cat}}$$

Cell surface
Cell volume

Parameter values at initial time

Boyden chamber

Monte Carlo simulation

Association process:

rate $\propto k$ [A][B]

Kinetic rate constant

Local concentrations

Catalytic process:

D	0.1 – 2 µm²/s	
[Rec]	0 – 100 nM	~ 0 – 10 ⁵ / cell
[L+], [L-]	500 nM	~ 10 ⁶ / cell
[E+], [E-]	5 - 50 nM	~ 10 ⁴ - 10 ⁵ / cell
κ _{cat}	1 s⁻¹	
K _{diss}	0.1 s⁻¹	
<i>k</i> _{ass}	50 s⁻¹ µM⁻¹	

$\varphi = [\mathbf{L}_+] - [\mathbf{L}_-]$

 $\delta \varphi \, = \, \varphi - \left< \varphi \right>$

 $+\infty$ $\langle \delta \varphi(\mathbf{u}) \delta \varphi(\mathbf{u}') \rangle = \sum C_l P_l(\mathbf{u} \cdot \mathbf{u}')$ l=1

Postma et al., J. Cell Sci. 117 (2004) 2925

Conclusions

The phase separation scenario explains in simple terms:

- The large amplification of shallow chemotactic gradients
- The fact that cells do not respond to uniform stimulation
- Stochastic cell polarization
- The formation of small phosphoinositide clusters for low levels of stimulation

A. Gamba, A. de Candia, S. Di Talia, A. Coniglio, F. Bussolino, G. Serini *Phase separation in eukaryotic chemotaxis* PNAS **102** (2005) 16927