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The main assumption of the Fermi liquid theory:

(D

B = Constant (weakly depends on temperature)

Not always true: e.g. for an attraction one has a Cooper instability.

What about repulsion?
Nothing in the weak coupling limit (common knowledge).

In this work: there are non-trivial correlations for repulsion in the
weak coupling limit and even an instability!
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Everything comes not from two electron correlations but from
four electron ones! == A reason why nobody (?) has noticed
these instabilities before.

: v Spin excitations

Reduction from electrons to collective excitations: Bosonization
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The scheme of the method.

1. Singling out slow varying k <k, < pe pairs in the interaction.

|
ﬁmﬁf:m:EZ / dP,dP2d K (2.10)

(Vs (BL) o (Py + K) X (Ps) o (P2 — K)
—Vi(p1 —P2) X, (1) Xo (P1 + K) x5 (P2) Xo (P2 — K)}

No pairs of the type ¥%, ¥ *x™ but they are not necessary
because onlyv (2p.) and V(0) play arole.

Example of a Cooper logarithm with these vertices.

pPt+q -p—k pPt+q

V(2p:)
4 p+q+k -P

FIG. 2: Superconducting loop. Logarithm comes from small
momenta k < k..
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2. Decoupling of the slow pairs by the Hubbard-Stratonovich
transformation e=s) electron motion in a slow field @ ===
writing equations for quasiclassical Green functions

@ Is a 2x2 spin matrix.
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The solution

T ) o1 ! Generalization of the
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Equations for | i, (z) =

S,(r,z) Spin
Another representation: | M (2) = pn () +Sa (@)o) ) ( Charge
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Equations for the charge and spin excitations: starting point
for the calculations.

o A (z) No interaction leading to
—— +iwwpnVR | pn(z) = —i ” ] ]
( i ) ’ 5 infrared divergences.

) ., Effective interaction leading

(—2 + twpnVg | Sy ()
ar V to divergent contributions at
Ohy (2) T=0 (logarithmic in any

+2i [hn (2) X5 (2)] = —5-

dimensions)

jddk 1 1 d 7k, in £
27)! —iw+v.kiiio+v ki Y (22) T

!

Non-trivial effective model for spin excitations.
Logarithmic in any dimensions mm) RG treatment
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Effective field theory for the spin excitations. (Due to
necessity of averaging over h, use of supervectors).

The operator L. = _a% +ivp (nV,) + 2wk is not hermitian ==
doubling the size of the supervectors

Effective Lagrangian

7 _ fexp (=L [¢)]) Do) Z -Partition function, L-Lagrangian

L[] = Lo [#9] + Lo [¢] + Ls ] + La [¢)]

Lo [¢] = —21’;;]1,&!,,1 (X)Hotha (X) dX || Hy = ( _iupfg}ngszs —ivp_(rarfg;’r”z” )

L,[v] -Lagrangian of free excitations
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Interaction terms

Ly [9] = —8veagycasyv, ./ (Mﬁ% (X) u)

< T (uthg, (X)7sthyy (X)) dX

(;

Lo [9] = 80V 2iagsy [ (Bo K)ot (X) u)

« I (Fga.x—(u)rgga,y (X)) dX

L,, L, are supersymmetric

= TCuyp = T80y = 1

Ly [¢)] = 4iv f (mfrﬁx () F.:.)

« T (Fod. (@)rstp, (X)) dX

L,, L; violate the supersymmetry s=) contribution to

thermodynamics

Next step: renormalization group treatment.
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Results of the solutions of the RG equations.

Quartic interaction: z,(&) -forward scattering, y,(¢)

backward scattering

1 1 & -Logarithmic variable
Cubic interaction:
1 _ &%
SN N - SO =g S O=—"%
BE=gre B¢ (& +€)° ! (& -¢)
Quadratic interaction: N e &
&3 (‘S) . 37 sew 2
(& +8° (& +9)
A, (&) =const=A(0)
_ 2 _i
__ &
++ — A- _ b
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Results for the specific heat SC

Only the backscattering amplitudes A, (&) contribute to
thermodynamics in the one loop approximation.

OC

Thermodynamic potential
In the first and second
order in the effective A
A non-trivial contribution
comes from b) only.

seoz = -2 (L) (0457 )

5. . 3T (T 3]'1
=T 700 \er ) Jroe,

(T% +6Y (6))

Charge excitations

/
}\ Spin excitations
. ——+—

df
g
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The function Y is not universal and depends on the cutoff.

22
YO =7

.

Xln(l—l—t) n(t)dt

(1 —|—f)

X = —ayl'yIn[max{0,1/=0}]

1 10

Y(0)=T7 (——EX) for x <1

Y (@) ~

XE

YX =0

=T} /2
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m=) Agreement with:

Chubukov, Maslov, Gangadharaiah, Glazman (2005) for 2d,
Chubukov, Maslov, Millis (2005) for 3d

(Direct diagrammatic expansion)
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Does this instability mean anything?

What about 71 (¢) = ?

Yes!

Formation of an order parameter Q(u):

Qaﬂ(u):<l)yal//ﬂ> O<u<1

Qaﬂ - _Qﬁa — Qy - gaﬂyQaﬂ
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Equation for the “order parameter”

Qo (u}sz

vrky)” +

/ 2rTu?vrQo (u) dk|
( — Q5 (u) 27

Qo (u)

= Ag (u) gVAV ™!

q=12zq,z',2z' =1

o 4

1 =alu’T Z

|w|{€n

Vw? +ﬂ~?t)

w=2mT,n=0x1213....
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A,(u) isa function of u,

O<u<l
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Asymptotic behavior

- 1
Ao (u) = 0 exp (—m) Low temperatures
‘ aTTu? ]
Bo (W) = T3 n a0/ High temperatures

A,(u) is always non-zero!
Change of the specific heat at low temperatures

T @&  Universal
In(e- /T)

Interpretation: A (u) is the inverse time of the relaxation of the

spin excitations.
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Conclusions.

There can be a non-trivial life in the Fermi gas with a
repulsion due to spin excitations.

All these effects should become very pronounced near
guantum critical points like normal metal-magnetic states
transitions (may be, in the high Tc cuprates(?))
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