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3d equations of motion
The equation of motion for an incompressible 3d flow are

   

∂u
∂t

+ u ⋅ ∇u = −
∇p
ρ

+ ν∇2u

(∇⋅u=0, ν viscosity)
Claude Navier, 1827 George G. Stokes, 1845

3d NS equations conserves kinetic energy in the inviscid limit.

The viscous energy balance is
   
E =

1
2

u
2

d3x∫

  
dE
dt

= −2νZ

   
Z =

1
2

∇ × u
2

d3x∫enstrophy



Navier-Stokes equations and turbulence
The flow becomes turbulent when

In this limit (i.e. ν->0) the energy
dissipation rate remains finite:

   

Re =
u ⋅ ∇u⎡

⎣
⎤
⎦

ν∇2u⎡
⎣⎢

⎤
⎦⎥

; UL
ν

? 1

Typical Re numbers
laboratory: Re ≈ 104

atmosphere: Re ≈ 107

Re

  
ε = lim

ν → 0
2νZ > 0

dissipative anomaly



3D Navier Stokes

•Poiseuille’s velocity profile

2D Navier Stokes + Friction

•neglect vertical motions

  α ~ ν h2

Ekman-Navier-Stokes equations

Shallow layer of incompressible fluid

f
t

+−∇=∇⋅+
∂
∂ αωωνωω 2u

Ekman friction (rotating flow)
Rayleigh friction (stratified flow)
Hartmann friction (MHD)
air friction (soap film)

α

h
L

h<<L

   

∂u
∂t

+ u ⋅ ∇u = −
∇p
ρ

+ ν∇2u + f

∇ ⋅ u = 0

  

uz = O(h / L)ux,y : 0

ux,y (z) : z2

   
ν∇

(3d )
2u− > ν∇

(2d )
2u − αu

   

∂u
∂t

+ u ⋅ ∇u = −
∇p
ρ

+ ν∇2u − αu + f

∇ ⋅ u = 0

⎧

⎨
⎪

⎩
⎪

For vorticity ω=∇xu



Two-dimensional turbulence and geophysical flows
2D Navier-Stokes equation are a simple
model for large scale motion of 
atmosphere and oceans: thin layers of
fluid in which stratification and 
rotation supress vertical motions.



Energy/enstrophy balance for 2d NS
2d Navier-Stokes equations have two inviscid quadratic invariants:

   
E =

1
2

u
2

d2x = E(k)dk∫∫Energy

  
Z =

1
2

ω2d2x = k2E(k)dk∫∫Enstrophy

E(k): energy spectrum

Energy/enstrophy balance in viscous flow:

  
dE
dt

= −2νZ
  
dZ
dt

= −2νP palinstrophy

In fully developed turbulence limit, Re=UL/ν -> ∞ (i.e. ν->0):

  
lim
ν → 0

dE
dt

= 0 (because dZ/dt≤0 and Z(t) ≤Z(0))

no dissipative anomaly for energy in 2d: no energy cascade to small scales !

  
P =

1

2
∇ × ω

2
d2x ≥ 0∫



The double cascade (Kraichnan 1967, Leith 1968, Batchelor 1969)

In the limit of Re->∞ 2d turbulence
displays an enstrophy cascade to
small scales at a rate ζ.
Energy flows to large scales with
rate ε generating the inverse
cascade.

The double cascade scenario is typical of 2d flows, e.g. plasmas and geophysical flows.

kF

Two inertial range of scales:
•energy inertial range 1/L<k<kF

(with constant ε)
•enstrophy inertial range kF<k<kd

(with constant ζ)

Two power-law self similar spectra in the inertial ranges.



Exact results

  
S

3
(r) = δru( )3 =

3
2

εr

Following the derivation obtained
by Kolmogorov for 3d turbulence
(Kolmogorov 4/5 law) is it possible
to obtain for 2d cascades two exact
results:

inverse energy cascade:

direct enstrophy cascade:

  
δru δrω( )2 = −2ζr

Kolmogorov’s 4/5 law (1941)



Dimensional derivation
enstrophy cascade inertial range:
constant enstrophy flux

  
ζ ;

δrω( )2
τr

;
δru δrω( )2

r
η« r « rF

dimensionally: δru/r=δrω and thus

  

δrω ; ζ 1/3

δru ; ζ 1/3r(scaling exponent h=1)

energy spectrum   E(k) ; ζ2/3k −3

energy cascade inertial range:
constant enstrophy flux

  
ε ;

δru( )2
τr

;
δru( )3

r
rF « r « L

thus   δru ; ε1/3r1/3 (scaling exponent h=1/3)

energy spectrum   E(k) ; ε2/3k −5/3

Kraichnan 1971
Logarithmic corrections

   E(k) ; ζ 1/3k −3 ln−1/3(kL)
kF



Experiments

Lenght (km)

Atmospheric flows:

Mesoscale wind variability
(radar and balloon): k-5/3

K.S. Gage, J.Atmos.Sciences 36 (1979)

GASP aircraft dataset: k-5/3 for
wavelenghts 3-300 km
Nastrom, Gage, Jasperson, Nature 310 (1984)

QuickTime™ and a
YUV420 codec decompressor

are needed to see this picture.

k-5/3



Laboratory experiments
Soap films

(Y. Couder, W. Goldburg, H. Kellay,
M.A. Rutgers, M. Rivera, R.E. Ecke)

Thin layer of electrolyte
driven by Lorentz force

(P. Tabeling, J. Gollub,
A. Cenedese)

interferometry, LDV, PIV

PIV



Direct numerical simulations
Integration of 2d-NS equations for vorticity scalar field ω=−∇2ψ

  
∂ω

∂t
+ u ⋅ ∇ω = ν∇2ω + f

stream function ψ with u=(∂yψ, - ∂xψ) 

Homogeneous, isotropic turbulence: square box with periodic boundary conditions

Pseudo-spectral code

* Fourier decomposition: derivatives in Fourier spaces
* Convolutions (products): back in physical space with FT

Extensive use of Fast Fourier Transform
Computationally much faster than 3d simulations



A brief history of DNS

DNS of 2d turbulence followed and
explosive trend in the early stage.

From Frisch & Sulem (Phys. Fluids 27
1984) at 2562 to Borue (Phys. Rev.
Lett. 71, 1993) at 40962 the resolution
grows following an exponential law:

N = 267*2(t-1984)/2.8

*

Late stage: saturation at “reasonable” resolution
(present simulations at 20482 on PC)



High resolution DNS

Set of simulations with
resolutions up to 163842

with a parallel pseudo-
spectral code on IBM-
SP4 at Cineca.

Simultaneously observation of direct and inverse cascade

(G. Boffetta and A. Celani, 2005)

38.02.1x10-32.4x10-30.010.0152x10-52048

36.13.2x10-31.2x10-30.010.0245x10-64096

37.63.6x10-35.5x10-40.010.01x10-616384

35.33.6x10-37.8x10-40.010.0252x10-68192

ζεηrFανN

Energy/enstrophy fluxes in spectral space Energy spectra

k-5/3

k-3



QuickTime™ and a
Sorenson Video 3 decompressor
are needed to see this picture.



Direct cascade

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

Direct cascade with linear friction:
when friction is sufficiently strong small scale vorticity has the same 
statistics of a passive scalar with finite lifetime (linear problem)

Early numerical simulations failed to reproduce
k-3 spectrum
Steeper spectrum (k-4-k-5) associate with the
presence of strong large scale vortices 
Decaying turbulence shows long term memory
of initial conditions (no universality)
(Benzi, McWilliams)

Recent simulations more in agreement with
Kraichnan prediction (logarithmic corrections?)
S.Chen, R. Ecke, G. Eyink, X. Wang, Z. Xiao, PRL 91, (2003)
E.Lindborg, K.Alvelius, Phys. Fluids 12 945 (2000)
C.Pasquero, G.Falkovich, PRE 65 056305 (2002)



•Non linear equation for ω=∇×u
• friction α

•Linear equation for θ
•lifetime τ ~ 1/α e.g. biological (plankton),

chemical pollutants

Vorticity Navier-Stokes with frictionVorticity Navier-Stokes with friction Passive scalar with finite lifetimePassive scalar with finite lifetime

   
∂ θ

∂ t
+ u ⋅ ∇ θ = κ ∇ 2θ − α θ + f

θ
   
∂ω

∂t
+ u ⋅ ∇ ω = ν ∇ 2ω − α ω + f

ω

A
C
T
I
V
E

P
A
S
S
I
V
E

2d vorticity equation:
analogy with passive scalar

S. Corrsin, JFM 11, 407 (1961) - M. Chertkov, Phys. Fluids 10, 3017 (1998)
D. Bernard, Europhys. Lett. 50 333 (2000)

K. Nam, E. Ott, T.M. Antonsen, P.N. Guzdar, PRL 84, 5134 (2000)
G.Boffetta, A.Celani, S.Musacchio, M.Vergassola, Phys. Rev. E 66, 026304 (2002)

QuickTime™ and a
Sorenson Video 3 decompressor
are needed to see this picture.



Mean field computation for passive scalar with finite lifetime

t=0

L

Stretching: incompressible smooth velocity
generates small scale features at exponential
rate (Lyapunov):

 r = L e−λ  t

Linear damping: fluctuations decay at
exponential rate

  θ(x(t),t) = θ(x(0),0) e-α  t

 
δθ(r,t) = δθ(L,0) r

L

⎛

⎝
⎜

⎞

⎠
⎟

α /λ

Combining the two exponential behavior, one has
and thus, in stationary conditions:

  
δθ(r,t)( )2p

 ≈ r2pα /λ

Fluctuations of Lyapunov exponent: intermittency corrections

α-dependent structure function exponents (and spectral index)

S. Corrsin, JFM 11, 407 (1961)

t=4

r

QuickTime™ and a
Sorenson Video 3 decompressor
are needed to see this picture.

M. Chertkov, Phys. Fluids 10, 3017 (1998)



Lagrangian description of vorticity cascade

  
TL (r) =

1
γ

ln(L / r)
r

L

Statistics of vorticity fluctuations δω(r) 
at small scale r < LF (forcing correlation lenght)

•<Ω2> = forcing variance
•TL(r) = Exit-time  δω(r) ≈ Ωe−αT

L
(r)

   

δω (r) = ω ( ′x ,t ) − ω (x,t ) = ds f ( ′x (s), s) − f (x(s), s)⎡
⎣

⎤
⎦ e −α (t −s )

0

t
∫

δω (r) ≈ Ω ds e −α (t −s )
0

t −T
L

r( )
∫ = Ωe −αTL r( )

Vorticity fluctuations δω(r) come from forcing contributions
along two fluid trajectories (ν=0):

Forcing gives different contributions only at separations > LF:

TL(r) is the time that a couple of particles at distance r takes to reach a separation LF backward in time.

In a two-dimensional incompressible smooth flow particles separate exponentially fast

treL γ=
Link between exit-time TL(r) and
finite time Lyapunov exponent γ

t

TL(r)

r

LF

t-TL(r) •

••

•

0 • •



•Distribution of finite time Lyapunov exponent γ (at long times):

Statistics of vorticity

  

S
p
ω (r) ≡ δω  (r)

p
; Ωp

f

r
L

⎛

⎝
⎜

⎞

⎠
⎟

pα

γ

γ

•Vorticity structure functions:

G(γ) (Cramér function) has a quadratic minimum 
at γ=λ (Lyapunov exponent)  P(γ ,t) ≈ t 1/2e−G(γ )t

λ

G(γ)

•

•Prediction for structure functions
  
Sp

ω (r) ≈ Ωp dγ  r
L

⎛

⎝
⎜

⎞

⎠
⎟∫

pα +G(γ )
γ

≈
r
L

⎛

⎝
⎜

⎞

⎠
⎟

ζ (p)

* scaling exponents depend on friction coefficient α

* intermittency: nonlinear ζ(p) for generic G
for quadratic G(γ)=(γ−λ)2/2µ one has the 
explicit expression 

  
ζ(p) = min

γ
pα + G(γ )( ) γ{ }

  E (k) ≈ k −3−ζ (2)

Correction to spectral slope

  
ζ(p) =

1
µ

λ2 + 2pαµ − λ⎡
⎣⎢

⎤
⎦⎥

velocity is smooth



From passive to active problem

  
Ωpe−αpT

L
(r) = Ωp

f
e−αpT

L
(r)

TL (r)
?

Crucial point: independence of forcing Ω and trajectories TL(r)

Forcing of passive scalar do not affects velocity field
Forcing of vorticity changes both vorticity and trajectories

(if fθ = fω , θ → ω)

• Ω arises from forcing at time  0 < s < t-TL(r)
• TL(r) is determined by velocity at  t-TL(t) < s < t

Friction velocity has decorrelation time 1/α

Passive condition:
 r << L

F
exp(−γ / α)• In a smooth flow

  
TL (r) =

1
γ

ln(LF / r)

 
T

L
r()>> 1 / α• Ω and TL(r) are independent if

Identical behaviour for vorticity and passive scalar at small scales

t

TL(r)

r

LF

t-TL(r) 1/α
•

••

•

0

In non-smooth flow (e.g. Kolmogorov: δu≈r1/3) TL is r-independent (dominated by large scales)
thus passive condition is never satisfied.



Energy spectrum always 
steeper than k-3: 
smooth velocity field

  E(k) ≈ k −3−ζ (2)

Vorticity fieldsα=0.05α=0.05 α=0.15α=0.15

Numerical results: effects of friction on spectrum

Correction to spectral slope
depends on friction intensity

QuickTime™ and a
Sorenson Video 3 decompressor
are needed to see this picture.

QuickTime™ and a
Sorenson Video 3 decompressor
are needed to see this picture.

k3
E(

k)



Comparing vorticity and passive scalar

passive scalar

vorticity

k*

Power spectra of
vorticity (+) Z(k)
passive scalar (*) Eθ(k)

  k ? k* = kF exp(λ / α)

passive condition

Identical slope
k-1-ζ(2)

for k>>k*

Intermittency

Probability density functions
p(δω(r)) not self-similar in r

Identical mechanism for
vorticity and passive scalar:

fluctuations of γ



Intermittency: anomalous scaling
of vorticty structure functions

  
ζ(p) = min

γ
pα + G(γ )( ) γ{ }

Prediction in terms of Cramer function

direct computation from SF 

prediction from Cramer function



Experimental study of direct cascade with friction
G. Boffetta, A. Cenedese, S. Espa, S. Musacchio
Europhysics Letters 71, 590 (2005).

Correction to the spectral slope observed
in experiments with electrolyte cell

h=1cm h=0.9cm h=0.8cm

α≈ν/h2



Inverse cascade

* Kraichnan-Kolmogorov spectrum
k-5/3 well observed

* absence of intermittency
* quasi-Gaussian statistics

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.



Early studies on inverse cascade

Thin layer of mercury with
electromagnetic forcing
J.Sommeria, JFM 170, 139 (1986)

Pseudo-spectral DNS at resolution 2562

U.Frisch, P.L. Sulem, Phys. Fluids 27, 1921 (1984)



Electrolyte cell
J. Paret, P.Tabeling, PRL 79 4162 (1997)

More recent experiments ...

Soap film experiments
M.A. Rutgers, PRL 81, 2244 (1998)

... and numerical simulations

G.Boffetta, A.Celani, M.Vergassola, PRE 61 R29 (2000)

much wider inverse cascade range than experiments!

L.M.Smith, V.Yakhot, PRL 71 352 (1993)



Kolmogorov law in inverse cascade
(constant energy flux)

  
δu

//
(r)( )3 =

3
2

εr

between forcing scale rF and
friction scale rfr=ε1/2α−3/2

Energy spectrum and spectral flux

   

E(k) = C ε2/3k −5/3

C = 6.0 ± 0.4

δu
//

(r)( )2 ; 12.9(εr)2/3



Skewness is small (smaller than in 3d):

  

S =
δu(r)3

δu(r)2
3/2

≈ 0.03

Higher order structure functions

  
Sp (r) = δu

//
(r)( )p = C p εr( )p /3

compatible with Kolmogorov scaling
no intermittency

pdf of velocity fluctuations
not far from Gaussian
(compared with 3d)

S5(r)

S7(r)



Antisymmetric part of longitudinal 
velocity increment pdf at separations
r=0.05, 0.075, 0.1 (rescaling)

Inset: antisymmetric part (lower) 
compared with symmetric part
(upper) at r=0.1

Deviations from Gaussian pdf

Antisymmetric part of the pdf:
pA(u)=p(u)-p(-u)

is a measure of the deviation from Gaussian distribution

Core of the distribution not far from Gaussian, but very large deviations
for large fluctuations δu (to be included in closures?)



Experimental study of two-dimensional enstrophy cascade
G. Boffetta, A. Cenedese, S. Espa and S. Musacchio
Europhysics Letters 71, 590 (2005).

Intermittency in two-dimensional Ekman-Navier-Stokes turbulence
G. Boffetta, A. Celani, S. Musacchio and M. Vergassola,
Physical Review E 66, 026304 (2002).

Closure of two dimensional turbulence: the role of pressure gradients
G. Boffetta, M. Cencini and J. Davoudi, Physical Review E 66, 017301 (2002).

Inverse energy cascade in two-dimensional turbulence:
Deviations from Gaussian behavior
G. Boffetta, A. Celani and M. Vergassola, Physical Review E 61, R29 (2000).

http://www.ph.unito.it/~boffetta



In scaling invariant inertial ranges
one expects

Statistical description

Two point correlations
   
C

αβ
(r) =< u

α
(x)u

β
(x + r) >= e−ikrĈ

αβ
(k)

k
∑

   
Ĉ

αβ
(k) = B(k) δ

αβ
−

k
α
k

β

k2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

  E(k) ≡ 2πk2B(k)

   
S

αβ
(r) = 2C

αβ
(0) − 2C

αβ
(r) = δruα

δruβ
Structure functions:

Using incompressibility and isotropy:

energy spectrum:

<...> ensemble averaging

Power-law energy spectrum

  E(k) ≈ k −γ

for 1 ≤ γ ≤ 3 (locality) one has

  Sαα
(r) ; rγ −1

Higher order structure functions

   
Sp (r) ≡ δru ⋅ r̂( )p

   δru ≡ u(x + r) − u(x)


